The 3DM-GX3® -25-OEM is a lower cost, miniature, industrial-grade attitude heading and reference system (AHRS) with integrated magnetometers, and OEM form factor.
Product Highlights
- High performance integrated MEMS sensor technology provide direct and computed AHRS outputs in a small package.
- Triaxial accelerometer, gyroscope, magnetometer, and temperature sensors achieve the best combination of measurement qualities.
- On-board processor runs a sophisticated Complimentary Filter (CF) fusion algorithm for precise attitude estimates and inertial measurements
- Sampling rates up to 30 KHz and data output up to 1 KHz
- Small size, lightweight packaging, and header connector interface ideal for OEM integration
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply
The 3DM-GX3® -15-OEM is a lower cost, miniature, industrial-grade inertial measurement unit (IMU) and vertical reference unit (VRU) in an OEM form factor.
Product Highlights
- High performance integrated MEMS sensor technology provide direct and computed IMU and VRU outputs in a small package.
- Triaxial accelerometer, gyroscope, and temperature sensors achieve the best combination of measurement qualities.
- On-board processor runs a sophisticated Complimentary Filter (CF) fusion algorithm for precise inclination estimates and inertial measurements
- Sampling rates up to 30 KHz and data output up to 1 KHz
- Small size, lightweight packaging, and header connector interface ideal for OEM integration
Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply
DatasheetThe 3DM-DH3 provides accurate drill path measurements including Inclination, Azimuth, GTF, MTF, Dip Angle, sensor temperatures, G-TOT and H-TOT.
The 3DM-GX3® -35 is a miniature industrial-grade all-in-one navigation solution with integrated GPS and magnetometers, high noise immunity, and exceptional performance.
Product Highlights
- High performance integrated GPS receiver and MEMS sensor technology provide direct and computed PVA outputs in a small package.
- Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities.
- Dual on-board processors run a sophisticated Extended Kalman Filter (EKF) for excellent position, velocity, and attitude estimates.
The 3DM-GX4 -25™ is a miniature industrial-grade attitude heading and reference system (AHRS) with integrated magnetometers, high noise immunity, and exceptional performance.
Product Highlights
- High performance integrated MEMS sensor technologyprovide direct and computed AHRS outputs in a small package.
- Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities.
- Dual on-board processors run a sophisticated AdaptiveKalman Filter (AKF) for excellent static and dynamic attitude estimates and inertial measurements.
The 3DM-GX4-15™ is a miniature industrial-grade inertial measurement unit (IMU) and vertical reference unit (VRU) with high noise immunity, and exceptional performance.
Product Highlights
- High performance integrated MEMS sensor technology provide direct and computed IMU and VRU outputs in a small package.
- Triaxial accelerometer, gyroscope, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities.
- Dual on-board processors run a sophisticated Adaptive Kalman Filter (AKF) for excellent static and dynamic inclination estimates and inertial measurements.
The 3DM-GX4-45™ is a miniature industrial-grade all-in-one navigation solution with integrated GPS and magnetometers, high noise immunity, and exceptional performance.
Product Highlights
- High performance integrated GPS receiver and MEMS sensor technology provide direct and computed PVA outputs in a small package.
- Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities.
- Dual on-board processors run a sophisticated Extended Kalman Filter (EKF) for excellent position, velocity, and attitude estimates.
MicroStrain’s SensorCloud™ is a unique sensor data storage, visualization and remote management platform that leverages powerful cloud computing technologies to provide excellent data scalability, rapid visualization, and user programmable analysis. Originally designed to support long-term deployments of MicroStrain wireless sensors, SensorCloud now supports any web-connected third party device, sensor, or sensor network through a simple OpenData API.
- Core SensorCloud features include: Virtually unlimited data storage with triple-redundant reliability, ideal for collecting and preserving long-term sensor data streams
- Time series visualization & graphing tool with exceptionally fast response, allows viewers to navigate through massive amounts of data, and quickly zero in on points of interest
- MathEngine® feature allows users to quickly develop and deploy data processing and analysis apps that live alongside their data in the cloud
- Flexible SMS and email alert scripting features helps users to create meaningful and actionable alerts.
To sign up for a free account, click here.
Overview
SensorCloud is useful for a variety of applications, particularly where data from large sensor networks needs to be collected, viewed, and monitored remotely. Structural health monitoring and condition based monitoring of high value assets are applications where commonly available data tools often come up short in terms of accessibility, data scalability, programmability, or performance. MicroStrain’s SensorCloud was born out of a need for a better tool for these types of applications but the core features and benefits can add value to a much broader range of applications.
Datasheet ManualPages
Best in Class Performance
- Fully calibrated, temperature-compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application
- High performance, low drift gyros with noise density of 0.002°/sec/√Hz and VRE of 0.001°/s/g2RMS
- Smaller and lighter than most tactical grade GNSS/INS units
-
Ease of Use
- User-defined sensor-to-vehicle frame transformation
- Easy integration via comprehensive SDK
- Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
-
Cost Effective
- Out-of-the box solution reduces development time
- High performance tactical grade outputs at an industrial grade price
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application.
Ease of Use
- Easy integration via comprehensive SDK
- Common protocol with the 3DM-GX4® and 3DM-RQ1™ sensor families for easy migration
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise modeling allow for fine tuning to conditions in each application.
Ease of Use
- Easy integration via comprehensive SDK
- Common protocol with the 3DM-GX4® and 3DM-RQ1™ sensor families for easy migration
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Best in Class
- Precise downhole orientation
- High-speed sample rate & flexible data outputs
- Extended use, low-power data logging
Easiest to Use
- Rapid deployment in the drill string
- Outputs drill path measurements
Cost Effective
- Reduced cost and rapid time to market for customer’s applications
- Aggressive volume discount schedule
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
- Compact, low profile, and lightweight
Ease of Use
- Easy integration via comprehensive SDK
- Common protocol between 3DM-GX3, GX4, RQ1, GQ4, GX5, and CV5
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
- High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g
2RMS
- Smallest and lightest industrial GPS/INS available
Ease of Use
- User-defined sensor-to-vehicle frame transformation
- Easy integration via comprehensive SDK
- Common protocol with the 3DM-GX3® and 3DM-RQ1-45™ sensor families for easy migration
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
- High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
- Smallest and lightest industrial AHRS available
Ease of Use
- User-defined sensor-to-vehicle frame transformation
- Easy integration via comprehensive SDK
- Common protocol with the 3DM-GX3® and 3DM-RQ1-45™ sensor families for easy migration
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
- High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
- Smallest and lightest industrial AHRS available
Ease of Use
- User-defined sensor-to-vehicle frame transformation
- Easy integration via comprehensive SDK
- Common protocol with the 3DM-GX3® and 3DM-RQ1- 45™ sensor families for easy migration
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Best in Class Performance
- Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
- Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
- High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
- Smallest and lightest industrial GPS/INS available
Ease of Use
- User-defined sensor-to-vehicle frame transformation
- Easy integration via comprehensive SDK
- Common protocol with the 3DM-GX3® and 3DM-RQ1-45™ sensor families for easy migration
Cost Effective
- Out-of-the box solution reduces development time.
- Volume discounts
Key features of SensorCloud include:
- OpenData API: Allows users to securely upload sensor data from any web-connected source or platform, and download selected or entire sets of data
- FastGraph: Time series visualization & graphing tool with exceptionally fast response allows viewers to navigate through massive amounts of data, and quickly zero in on points of interest
- Custom Alerts: Flexible SMS and email alert scripting features helps users to create meaningful and actionable alerts
- LiveConnect: Allows remote configuration, viewing, and record high speed data streams from any wireless sensor cluster on your Ethernet network in real-time
- MathEngine: Enables users to quickly develop and deploy data processing and analysis apps that live alongside their data in the cloud
Pages
Sensor
- Multi-Constellation receiver tracks up to 32 satellites
-
High Performance Accelerometer
- 50 µg/√Hz (+-5g option)
-
Super-stable Gyro
- 5 dph in-run bias (-40 to +85°C)
- Non-linearity ±0.02% fs
- ARW 0.2 °/√hr
- Attitude repeatability 0.1°
Operation
- Adjustable sampling rates up to 500Hz
- 34 state auto-adaptive EKF
- Independently configurable IMU, GNSS, EKF outputs
- Forward compatible MIP Protocol optimizes bandwidth
- SensorConnect software for configuration, control, display, and logging
Package
- Anodized Aluminum
- Precision alignment features
- Highly compact and low profile
- 76.2mm x 65.4mm x 18.9mm
- 105 grams
- USB and RS-232 interfaces
- –40 to +85 °C operating temperature range
General |
|||
---|---|---|---|
Integrated sensors |
Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, and temperature sensors, |
||
Data outputs |
Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , deltaTheta, deltaVelocity Computed outputs: attitude estimates (in Euler angles, quaternion, orientation matrix), |
||
Resolution |
16 bit SAR oversampled to 17 bits |
||
Inertial Measurement Unit (IMU) Sensor Outputs |
|||
Accelerometer |
Gyroscope |
Magnetometer |
|
Measurement range |
±5 g (standard) ±1.7±16, and ±50 g (option) |
300°/sec (standard) ±50, ±600,±1200 °/sec (options) |
±2.5 Gauss |
Non-linearity |
±0.1 % fs |
±0.03 % fs |
±0.4 % fs |
Bias instability |
±0.04 mg |
18°/hr |
-- |
Initial bias error |
±0.002 g |
±0.25°/sec |
±0.003 Gauss |
Scale factor stability |
±0.05 % |
±0.05 % |
±0.1 % |
Noise density |
80 µg/√Hz |
0.03°/sec/√Hz |
100 µGauss/√Hz |
Alignment error |
±0.05° |
±0.05° |
±0.05° |
Adjustable bandwidth |
225 Hz (max) |
440 Hz (max) |
230 Hz (max) |
IMU filtering |
Digitally filtered (user adjustable) and scaled to physical input; coning and sculling integrals computed at 1 kHz |
||
Sampling rate |
30 kHz |
30 kHz |
7.5 kHz |
IMU data output rate |
1 Hz to 1000 Hz |
||
Computed Outputs |
|||
Attitude accuracy |
±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ) |
||
Attitude heading range |
360° about all axes |
||
Attitude resolution |
< 0.01° |
||
Attitude repeatability |
0.2° (typ) |
||
Calculation update rate |
1000 Hz |
||
Computed data output rate |
1 Hz to 500 Hz |
||
Operating Parameters |
|||
Communication |
USB 2.0, TTL (3.3 V dc, 9,600 bps to 921,600 bps, default 115,200) |
||
Power source |
+ 3.1 to + 5.5 V dc |
||
Power consumption |
80 mA at 5 V dc (USB) |
||
Operating temperature |
-40 °C to +70 °C |
||
Mechanical shock limit |
500 g |
||
Physical Specifications |
|||
Dimensions |
38 mm x 24 mm x 11.6 mm |
||
Weight |
11.6 grams |
||
Regulatory compliance |
ROHS |
||
Integration |
|||
Connectors |
Data/power output: Samtec FTSH Series (FTSH-105-01-F-D-K) |
||
Software |
MIP™ Monitor, Windows XP/Vista/7/8 compatible |
||
Compatibility |
Protocol compatibility with 3DM-RQ1™ and 3DM- GX4® sensor families. |
||
Software development kit (SDK) |
MIP™ data communications protocol with sample code available (OS and computing platform independent) |
General |
|||
---|---|---|---|
Integrated sensors |
Triaxial accelerometer, triaxial gyroscope, and temperature sensors |
||
Data outputs |
Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, deltaTheta, deltaVelocity Computed outputs: attitude estimates (Euler angles, quaternion, orientation matrix) |
||
Resolution |
16 bit SAR oversampled to 17 bits |
||
Inertial Measurement Unit (IMU) Sensor Outputs |
|||
Accelerometer |
Gyroscope |
||
Measurement range |
±5 g (standard) ±1.7, and ±50g. (option) |
300°/sec (standard) ±50, ±600, ±1200°/sec (options) |
|
Non-linearity |
±0.1 % fs |
±0.03 % fs |
|
Bias instability |
±0.04 mg |
18°/hr |
|
Initial bias error |
±0.002 g |
±0.25°/sec |
|
Scale factor stability |
±0.05 % |
±0.05 % |
|
Noise density |
80 µg/√Hz |
0.03°/sec/√Hz |
|
Alignment error |
±0.05° |
±0.05° |
|
Adjustable bandwidth |
225 Hz (max) |
440 Hz (max) |
|
IMU filtering |
Digitally filtered (user adjustable) and scaled to physical inputs; coning and sculling integrals computed at 1 kHz |
||
Sampling rate |
30 kHz |
30 kHz |
|
IMU data output rate |
1 Hz to 1000 Hz |
||
Computed Outputs |
|||
Roll and pitch accuracy |
±0.5° (static, typ), ±2.0° (dynamic, typ) |
||
Roll and pitch range |
360° about all axes |
||
Roll and pitch resolution |
< 0.01° |
||
Roll and pitch repeatability |
0.2° (typ) |
||
Calculation update rate |
1000 Hz |
||
Computed data output rate |
1 Hz to 500 Hz |
||
Operating Parameters |
|||
Communication |
USB 2.0, TTL serial UART (3.3 V dc, 9,600 bps to 921,600 bps, default 115,200) |
||
Power source |
+ 3.1 to + 5.5 V dc |
||
Power consumption |
80 mA at 5 V dc (USB) |
||
Operating temperature |
-40 °C to +70 °C |
||
Mechanical shock limit |
500 g |
||
Physical Specifications |
|||
Dimensions |
38 mm x 24 mm x 11.6 mm |
||
Weight |
11.6 grams |
||
Regulatory compliance |
ROHS |
||
Integration |
|||
Connectors |
Data/power output: Samtec FTSH Series (FTSH-105-01-F-D-K) |
||
Software |
MIP™ Monitor, Windows XP/Vista/7/8 compatible |
||
Compatibility |
Protocol compatibility with 3DM-RQ1™ and 3DM- GX4® sensor families. |
||
Software development kit (SDK) |
MIP™ data communications protocol with sample code available (OS and computing platform independent) |
Sensor
- A/D resolution 24 bits accelerometer; 16 bits magnetometer
- Angle resolution 0.02˚
- Accuracy ± 0.2˚ inclination ± 0.5˚ azimuth
- Angle measurement repeatability 0.1°
Operation
- Output data rates up to 8Hz
- Output inclination, azimuth, GTF, MTF, Dip Angle, G-TOT, H-TOT
- Datalogging capacity up to 32,768 data records
Package
- CNC Anodized Aluminum
- Precision alignment features
- Highly compact and low profile
- 177.0 mm x 21.0mm diameter
- 91.0 grams
- RS422
- –40 to +125 °C operating temperature range
Sensor
- 50-channel GPS receiver
-
High Performance Accelerometer
- 50 µg/√Hz (+-5g option)
-
Super-stable Gyro
- 5 dph in-run bias (-40 to +85°C)
- Non-linearity ±0.02% fs
- ARW 0.2 °/√hr
- Attitude repeatability 0.1°
Operation
- Adjustable sampling rates up to 500Hz
- Independently configurable IMU, GPS, EKF outputs
- Forward compatible MIP Protocol optimizes bandwidth
- SensorConnect software for configuration, control, display, and logging
Package
- Alodine Aluminum
- DO-160G environmental rating
- Precision alignment features
- Highly compact and low profile
- 88.3mm x 76.2mm x 22.0mm
- 205 grams
- RS422 (9600 bps to 460,800 bps)
- –40 to +85 °C operating temperature range (-50 °C optional)
- MTBF 180,000 hours (Telcordia method I, AC/30C)
General |
|||
---|---|---|---|
Integrated sensors |
Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, and temperature sensors, |
||
Data outputs |
Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , deltaTheta, deltaVelocity Computed outputs LLH position, NED velocity, attitude estimates (in Euler angles, quaternion, orientation matrix), |
||
Resolution |
16 bit SAR oversampled to 17 bits |
||
Inertial Measurement Unit (IMU) Sensor Outputs |
|||
Accelerometer |
Gyroscope |
Magnetometer |
|
Measurement range |
±5 g (standard) ±1.7±16, and ±50 g (option) |
300°/sec (standard) ±50, ±600,±1200 °/sec (options) |
±2.5 Gauss |
Non-linearity |
±0.1 % fs |
±0.03 % fs |
±0.4 % fs |
Bias instability |
±0.04 mg |
18°/hr |
-- |
Initial bias error |
±0.002 g |
±0.25°/sec |
±0.003 Gauss |
Scale factor stability |
±0.05 % |
±0.05 % |
±0.1 % |
Noise density |
80 µg/√Hz |
0.03°/sec/√Hz |
100 µGauss/√Hz |
Alignment error |
±0.05° |
±0.05° |
±0.05° |
Adjustable bandwidth |
225 Hz (max) |
440 Hz (max) |
230 Hz (max) |
IMU filtering |
Digitally filtered (user adjustable) and scaled to physical input; coning and sculling integrals computed at 1 kHz |
||
Sampling rate |
30 kHz |
30 kHz |
7.5 kHz |
IMU data output rate |
1 Hz to 1000 Hz |
||
Computed Outputs |
|||
Attitude accuracy |
±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ) |
||
Attitude heading range |
360° about all axes |
||
Attitude resolution |
< 0.01° |
||
Attitude repeatability |
0.2° (typ) |
||
Calculation update rate |
1000 Hz |
||
Computed data output rate |
1 Hz to 500 Hz |
||
Global Positioning System (GPS) Outputs |
|||
Receiver type |
50-channel, L1 frequency, C/A code SBAS: WAAS, EGNOS, MSAS |
||
GPS data output rate |
1 Hz to 4 Hz |
||
Time-to-first-fix |
Cold start: 27 sec, aided start: 4sec, hot start: 1 sec |
||
Sensitivity |
Tracking: -159 dBm, cold start: -147 dBm, hot start: -156 dBm |
||
Velocity accuracy |
0.1 m/sec |
||
Heading accuracy |
0.5° |
||
Horizontal position accuracy |
GPS: 2.5 m CEP SBAS: 2.0 m CEP |
||
Time pulse signal accuracy |
30 nsec RMS < 60 nsec 99% |
||
Acceleration limit |
≤ 4 g |
||
Altitude limit |
No limit |
||
Velocity limit |
500 m/sec (972 knots) |
||
Operating Parameters |
|||
Communication |
USB 2.0 (full speed) RS232 (9,600 bps to 921,600 bps, default 115,200) |
||
Power source |
+ 3.2 to + 16 V dc |
||
Power consumption |
200 mA (typ), 250 mA (max) - Vpri = 3.2 V dc to 5.5 V dc 850 mW (typ), 1000 mW (max) - Vaux = 5.2 V dc to 16 V dc |
||
Operating temperature |
-40 °C to +65 °C |
||
Mechanical shock limit |
500 g |
||
Physical Specifications |
|||
Dimensions |
44.2 mm x 24.0 mm x 13.7 mm (excluding mounting tabs), 36.6 mm (width across tabs) |
||
Weight |
23 grams |
||
Regulatory compliance |
ROHS |
||
Integration |
|||
Connectors |
Data/power output: micro-DB9 GPS antenna: MMCX type |
||
Software |
MIP™ Monitor, MIP™ Hard and Soft Iron Calibration, Windows XP/Vista/7/8 compatible |
||
Compatibility |
Protocol compatibility with 3DM-RQ1™ and 3DM- GX4® sensor families. |
||
Software development kit (SDK) |
MIP™ data communications protocol with sample code available (OS and computing platform independent) |
General |
|||
---|---|---|---|
Integrated sensors |
Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, temperature sensors, and pressure altimeter |
||
Data outputs |
Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, deltaTheta, deltaVelocity Computed outputs Adaptive Kalman Filter (AKF): filter status, GPS timestamp, attitude estimates (in Euler angles, quaternion, orientation matrix), bias compensated angular rate, pressure altitude, gravity-free linear acceleration, attitude uncertainties, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more. Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix), stabilized north and gravity vectors, GPS correlation timestamp |
||
Inertial Measurement Unit (IMU) Sensor Outputs |
|||
Accelerometer |
Gyroscope |
Magnetometer |
|
Measurement range |
±5 g (standard) ±16 g (option) |
300°/sec (standard) ±75, ±150, ±900°/sec (options) |
±2.5 Gauss |
Non-linearity |
±0.03 % fs |
±0.03 % fs |
±0.4 % fs |
Resolution |
<0.1 mg |
<0.008°/sec |
-- |
Bias instability |
±0.04 mg |
10°/hr |
-- |
Initial bias error |
±0.002 g |
±0.05°/sec |
±0.003 Gauss |
Scale factor stability |
±0.05 % |
±0.05 % |
±0.1 % |
Noise density |
100 µg/√Hz |
0.005°/sec/√Hz |
100 µGauss/√Hz |
Alignment error |
±0.05° |
±0.05° |
±0.05° |
Adjustable bandwidth |
225 Hz (max) |
250 Hz (max) |
- |
Offset error over temperature |
0.06% (typ) |
0.05% (typ) |
-- |
Gain error over temperature |
0.05% (typ) |
0.05% (typ) |
-- |
Scale factor non-linearity (@ 25° C) |
0.02% (typ) 0.06% (max) |
0.02% (typ) 0.06% (max) |
±0.0015 Gauss |
Vibration induced noise |
-- |
0.072°/s RMS/g RMS |
-- |
Vibration rectification error (VRE) |
-- |
0.001°/s/g2 RMS |
-- |
IMU filtering |
4 stage filtering: analog bandwidth filter to digital sigma- delta wide band anti-aliasing filter to (user adjustable) digital averaging filter sampled at 4 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz |
||
Sampling rate |
4 kHz |
4 kHz |
50 Hz |
IMU data output rate |
1 Hz to 1000 Hz |
||
Pressure Altimeter |
|||
Range |
-1800 m to 10,000 m |
||
Resolution |
< 0.1 m |
||
Noise density |
0.01 hPa RMS |
||
Sampling rate |
25 Hz |
||
Computed Outputs |
|||
Attitude accuracy |
AKF outputs: ±0.25° RMS roll & pitch, ±0.8° RMS heading (typ) CF outputs: ±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ) |
||
Attitude heading range |
360° about all axes |
||
Attitude resolution |
< 0.01° |
||
Attitude repeatability |
0.3° (typ) |
||
Calculation update rate |
500 Hz |
||
Computed data output rate |
AKF outputs: 1 Hz to 500 Hz CF outputs: 1 Hz to 1000 Hz |
||
Operating Parameters |
|||
Communication |
USB 2.0 (full speed) RS232 (9,600 bps to 921,600 bps, default 115,200) |
||
Power source |
+ 3.2 to + 36 V dc |
||
Power consumption |
100 mA (typ),120 mA (max) with Vpri = 3.2 V dc to 5.5 V dc 550 mW (typ), 800 mW (max) with Vaux = 5.2 V dc to 36 V dc |
||
Operating temperature |
-40 °C to +85 °C |
||
Mechanical shock limit |
500 g (calibration unaffected) 1000 g (bias may change) 5000 g (survivability) |
||
MTBF |
1.2 million hours (Telcordia method I, GL/35C) 0.45 million hours (Telcordia method I, GM/35C) |
||
Physical Specifications |
|||
Dimensions |
36.0 mm x 24.4 mm x 11.1 mm (excluding mounting tabs), 36.6 mm (width across tabs) |
||
Weight |
16.5 grams |
||
Enclosure material |
Aluminum |
||
Regulatory compliance |
ROHS, CE |
||
Integration |
|||
Connectors |
Data/power output: micro-DB9 |
||
Software |
MIP™ Monitor, MIP™ Hard and Soft Iron Calibration, Windows XP/Vista/7/8 compatible |
||
Compatibility |
Protocol compatibility with 3DM-GX3® and 3DM- RQ1-45™ sensor families. |
||
Software development kit (SDK) |
MIP™ data communications protocol with sample code available (OS and computing platform independent) |
General |
|||
---|---|---|---|
Integrated sensors |
Triaxial accelerometer, triaxial gyroscope, temperature sensors, and pressure altimeter |
||
Data outputs |
Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, ambient pressure, deltaTheta, deltaVelocity Computed outputs: Adaptive Kalman Filter (AKF): filter status, GPS timestamp, attitude estimates (Euler angles, quaternion, orientation matrix), bias compensated angular rate, pressure altitude, gravity-free linear acceleration, attitude uncertainties, gyroscope and accelerometer bias, scale factors and uncertainties, gravity models, and more. Complementary Filter (CF): attitude estimates (Euler angles, quaternion, orientation matrix), stabilized gravity vector, GPS correlation timestamp |
||
Inertial Measurement Unit (IMU) Sensor Outputs |
|||
Accelerometer |
Gyroscope
|
||
Measurement range |
±5 g (standard) ±16 g (option) |
300°/sec (standard) ±75, ±150, ±900°/sec (options) |
|
Non-linearity |
±0.03 % fs |
±0.03 % fs |
|
Resolution |
<0.1 mg |
<0.008°/sec |
|
Bias instability |
±0.04 mg |
10°/hr |
|
Initial bias error |
±0.002 g |
±0.05°/sec |
|
Scale factor stability |
±0.05 % |
±0.05 % |
|
Noise density |
100 µg/√Hz |
0.005°/sec/√Hz |
|
Alignment error |
±0.05° |
±0.05° |
|
Adjustable bandwidth |
225 Hz (max) |
250 Hz (max) |
|
Offset error over temperature |
0.06% (typ) |
0.05% (typ) |
|
Gain error over temperature |
0.05% (typ) |
0.05% (typ) |
|
Scale factor non-linearity (@ 25° C) |
0.02% (typ) 0.06% (max) |
0.02% (typ) 0.06% (max) |
|
Vibration induced noise |
-- |
0.072°/s RMS/g RMS |
|
Vibration rectification error (VRE) |
-- |
0.001°/s/g2 RMS |
|
IMU filtering |
4 stage filtering: analog bandwidth filter to digital sigma- delta wide band anti-aliasing filter to (user adjustable) digital averaging filter sampled at 4 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz |
||
Sampling rate |
4 kHz |
4 kHz
|
|
IMU data output rate |
1 Hz to 1000 Hz |
||
Pressure Altimeter |
|||
Range |
-1800 m to 10,000 m |
||
Resolution |
< 0.1 m |
||
Noise density |
0.01 hPa RMS |
||
Sampling rate |
25 Hz |
||
Computed Outputs |
|||
Roll and pitch accuracy |
AKF outputs: ±0.25° RMS (typical) CF outputs: ±0.5° static (typical), ±2.0° dynamic (typical) |
||
Roll and pitch range |
360° about all axes |
||
Roll and pitch resolution |
< 0.01° |
||
Roll and pitch repeatability |
0.3° (typ) |
||
Calculation update rate |
500 Hz |
||
Computed data output rate |
AKF outputs: 1 Hz to 500 Hz CF outputs: 1 Hz to 1000 Hz |
||
Operating Parameters |
|||
Communication |
USB 2.0 (full speed) RS232 (9,600 bps to 921,600 bps, default 115,200) |
||
Power source |
+ 3.2 to + 36 V dc |
||
Power consumption |
100 mA (typ),120 mA (max) with Vpri = 3.2 V dc to 5.5 V dc 550 mW (typ), 800 mW (max) with Vaux = 5.2 V dc to 36 V dc |
||
Operating temperature |
-40 °C to +85 °C |
||
Mechanical shock limit |
500 g (calibration unaffected) 1000 g (bias may change) 5000 g (survivability) |
||
MTBF |
1.2 million hours (Telcordia method I, GL/35C) 0.45 million hours (Telcordia method I, GM/35C) |
||
Physical Specifications |
|||
Dimensions |
36.0 mm x 24.4 mm x 11.1 mm (excluding mounting tabs), 36.6 mm (width across tabs) |
||
Weight |
16.5 grams |
||
Enclosure material |
Aluminum |
||
Regulatory compliance |
ROHS, CE |
||
Integration |
|||
Connectors |
Data/power output: micro-DB9 |
||
Software |
MIP™ Monitor, MIP™ Hard and Soft Iron Calibration, Windows XP/Vista/7/8 compatible |
||
Compatibility |
Protocol compatibility with 3DM-GX3® and 3DM- RQ1-45™ sensor families. |
||
Software development kit (SDK) |
MIP™ data communications protocol with sample code available (OS and computing platform independent) |
General |
|||
---|---|---|---|
Integrated sensors |
Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, temperature sensors, pressure altimeter and GPS receiver |
||
Data outputs |
Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, deltaTheta, deltaVelocity Computed outputs Extended Kalman Filter (EKF): filter status, GPS timestamp, LLH position, NED velocity, attitude estimates (in Euler angles, quaternion, orientation matrix), linear and compensated acceleration, bias compensated angular rate, pressure altitude, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more. Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix), stabilized north and gravity vectors, GPS correlation timestamp Global Positioning System outputs (GPS): LLH position, ECEF position and velocity, NED velocity, UTC time, GPS time, SV. GPS protocol access mode available. |
||
Inertial Measurement Unit (IMU) Sensor Outputs |
|||
Accelerometer |
Gyroscope |
Magnetometer |
|
Measurement range |
±5 g (standard) ±16 g (option) |
300°/sec (standard ±75, ±150, ±900 °/sec (options) |
±2.5 Gauss |
Non-linearity |
±0.03 % fs |
±0.03 % fs |
±0.4 % fs |
Resolution |
<0.1 mg |
<0.008°/sec |
-- |
Bias instability |
±0.04 mg |
10°/hr |
-- |
Initial bias error |
±0.002 g |
±0.05°/sec |
±0.003 Gauss |
Scale factor stability |
±0.05 % |
±0.05 % |
±0.1 % |
Noise density |
100 µg/√Hz |
0.005°/sec/√Hz |
100 µGauss/√Hz |
Alignment error |
±0.05° |
±0.05° |
±0.05° |
Adjustable bandwidth |
225 Hz (max) |
250 Hz (max) |
- |
Offset error over temperature |
0.06% (typ) |
0.05% (typ) |
-- |
Gain error over temperature |
0.05% (typ) |
0.05% (typ) |
-- |
Scale factor non-linearity (@ 25° C) |
0.02% (typ) 0.06% (max) |
0.02% (typ) 0.06% (max) |
±0.0015 Gauss |
Vibration induced noise |
-- |
0.072°/s RMS/g RMS |
-- |
Vibration rectification error (VRE) |
-- |
0.001°/s/g2 RMS |
-- |
IMU filtering |
4 stage filtering: analog bandwidth filter to digital sigma- delta wide band anti-aliasing filter to (user adjustable) digital averaging filter sampled at 4 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz |
||
Sampling rate |
4 kHz |
4 kHz |
50 Hz |
IMU data output rate |
1 Hz to 500 Hz |
||
Pressure Altimeter |
|||
Range |
-1800 m to 10,000 m |
||
Resolution |
< 0.1 m |
||
Noise density |
0.01 hPa RMS |
||
Sampling rate |
25 Hz |
Computed Outputs |
|||
---|---|---|---|
Position accuracy |
±2.5 m RMS horizontal, ± 5 m RMS vertical (typ) |
||
Velocity accuracy |
±0.1 m/s RMS (typ) |
||
Attitude accuracy |
EKF outputs: ±0.25° RMS roll & pitch, ±0.8° RMS heading (typ) CF outputs: ±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ) |
||
Attitude heading range |
360° about all axes |
||
Attitude resolution |
< 0.01° |
||
Attitude repeatability |
0.3° (typ) |
||
Calculation update rate |
500 Hz |
||
Computed data output rate |
EKF outputs: 1 Hz to 500 Hz CF outputs: 1 Hz to 1000 Hz |
||
Global Positioning System (GPS) Outputs |
|||
Receiver type |
50-channel u-Blox 6 engine GPS, L1 frequency, C/A code SBAS: WAAS, EGNOS, MSAS |
||
GPS data output rate |
1 Hz to 4 Hz |
||
Time-to-first-fix |
Cold start: 27 sec, aided start: 4sec, hot start: 1 sec |
||
Sensitivity |
Tracking: -159 dBm, cold start: -147 dBm, hot start: -156 dBm |
||
Velocity accuracy |
0.1 m/sec |
||
Heading accuracy |
0.5° |
||
Horizontal position accuracy |
GPS: 2.5 m CEP SBAS: 2.0 m CEP |
||
Time pulse signal accuracy |
30 nsec RMS < 60 nsec 99% |
||
Acceleration limit |
≤ 4 g |
||
Altitude limit |
No limit |
||
Velocity limit |
500 m/sec (972 knots) |
||
Operating Parameters |
|||
Communication |
USB 2.0 (full speed) RS232 (9,600 bps to 921,600 bps, default 115,200) |
||
Power source |
+ 3.2 to + 36 V dc |
||
Power consumption |
170 mA (typ), 200 mA (max) - Vpri = 3.2 to 5.5 V dc 750 mW (typ), 900 mW (max) - Vaux = 5.2 to 36 V dc |
||
Operating temperature |
-40 °C to +85 °C |
||
Mechanical shock limit |
500 g (calibration unaffected) 1000 g (bias may change) 5000 g (survivability) |
||
MTBF |
180,000 hours (Telcordia method I, GL/35C) 67,000 hours (Telcordia method I, GM/35C) |
||
Physical Specifications |
|||
Dimensions |
44.2 mm x 24.0 mm x 11.3 mm (excluding mounting tabs), 36.6 mm (width across tabs) |
||
Weight |
20 grams |
||
Enclosure material |
Aluminum |
||
Regulatory compliance |
ROHS, CE |
||
Integration |
|||
Connectors |
Data/power output: micro-DB9 GPS antenna: MMCX type |
||
Software |
MIP™ Monitor, MIP™ Hard and Soft Iron Calibration, Windows XP/Vista/7/8 compatible |
||
Compatibility |
Protocol compatibility with 3DM-GX3® and 3DM- RQ1-45™ sensor families. |
||
Software development kit (SDK) |
MIP™ data communications protocol with sample code available (OS and computing platform independent) |
Pages
General Documentation
General Documentation
- 3DM-GX3® -25 OEM Product Datasheet
- 3DM-GX3® -25 OEM Mounting and Connector Information
- 3DM-GX3® -25 MIP Quick Start Guide
- 3DM-GX3® -25 Single Byte Quick Start Guide
- MIP Hard and Soft Iron Calibration Quick Start Guide
- 3DM-GX3® -15,-25 MIP Data Communications Protocol
- 3DM-GX3-25 Single Byte Data Communications Protocol
- Dewesoft™ 3DM-GX3® -25 Single Byte Plugin Instructions
- 3DM-GX3® Data Communications Protocol Errata
- MIP Software Downloads
- Firmware Upgrades for 3DM-GX3®
- Inertial product comparison
Technical Notes
- 3DM-GX3® Importing Magnetic Vectors
- Extending the USB Cable
- Using an Hardware Datalogger with Inertial Sensors
- 3DM-GX3® Startup Settings
- Using Dataloggers with Inertial Sensors
- Phihong PSA05R-090 Power Supply
- 3DM-GX3® -25 Up and North Compensation
- Working with the 3DM-GX3® -25 Update Mode
- Using the 3DM-GX3® -25 Capture Gyro Bias Function
- 3DM-GX3® -25 Coning and Sculling
- Operating the 3DM-GX3® -25 Software on the Mac OS X
Mechanical Prints (Uncontrolled)
Video
General Documentation
- 3DM-GX3® -15-OEM Datasheet
- 3DM-GX3® -15 Quick Start Guide
- 3DM-GX3® -15,-25 MIP Data Communications Protocol
- 3DM-GX3® Data Communications Protocol Errata
- MIP Software Downloads
- Firmware Upgrades for 3DM-GX3®
- 3DM-GX3® -15 OEM Mounting and Connector Information
- Inertial product comparison
Technical Notes
- Extending the USB Cable
- Using an Hardware Datalogger with Inertial Sensors
- 3DM-GX3® Startup Settings
- Using Dataloggers with Inertial Sensors
- Phihong PSA05R-090 Power Supply
Mechanical Prints (Uncontrolled)
General Documentation
Technical Notes
General Documentation
Technical Notes
- ROHS Certificate
- Inertial product comparison
- Inertial Sensor Utils User Manual
- Using an Hardware Datalogger with Inertial Sensors
- Selecting a Gyroscope Option
- Using a Marine-Grade GPS Antenna
- When to use “Capture Gyro Bias”
- Auto-Adaptive Dynamic Roll and Pitch Performance
- Overview of All Inertial Products
General Documentation
- 3DM-GX3® -35 Product Datasheet
- 3DM-GX3® -35 Quick Start Guide
- 3DM-GX3® -35 Data Communications Protocol Manual
- 3DM-GX3® Data Communications Protocol Errata
- Firmware Upgrades for 3DM-GX3®
- MIP Hard and Soft Iron Calibration Quick Start Guide
- 3DM-GX3® -35 Declaration of Conformity
- Inertial product comparison
Technical Notes
- 3DM-GX3® Importing Magnetic Vectors
- Extending the USB Cable
- Using an Hardware Datalogger with Inertial Sensors
- 3DM-GX3® Startup Settings
- Using Dataloggers with Inertial Sensors
- Using u-blox Software with 3DM-GX3®-35 and 3DM-GX3®-45
- Outputting NMEA Packets to GPS Ready Software
- Phihong PSA05R-090 Power Supply
- GPS Antenna Performance Comparison
- 3DM-GX3® -35 Communication and Power Connector
Mechanical Prints (Uncontrolled)
- 3DM-GX3® -35 Sensor Origin
- 3DM-GX3® GPS Antenna
- Gilsson Antenna Mounting
- 3DM-GX3®-25/35/45 Mounting Holes
- 3065-7046 3DM-GX3® -35 Enclosure Lid Drawing
- 3065-7045 3DM-GX3® -35 Enclosure Base Drawing
- 6224-0100 Craft Cable with Micro DB9 and 9 flying leads
- 6225-4220 3DM-GX3® -35 Dimensional Drawing
- 6212-1040 9022-0019 Micro D-to-USB Communication and Power Cable
- 6212-1000 4005-0037 Micro D-to-RS232 Communication and Power Cable
Video
General Documentation
- 3DM-GX4 -25™ Product Datasheet
- 3DM-GX4 -25™ Quick Start Guide
- 3DM-GX4 -25™ User Manual
- 3DM-GX4-25™ Data Communications Protocol
- Inertial products overview
- 3DM-GX4™ Products Declaration of Conformity
Technical Notes
- Migrating From a GX3® Series Sensor to a GX4™
- Using a Hardware Datalogger with a 3DM-GX4™
- 3DM-GX4-25™ Communication and Power Connector
Mechanical Prints (Uncontrolled)
- 3DM-GX4-25™ Block Diagram
- 6224-0100 Craft Cable with Micro DB9 and 9 flying leads
- 6212-1040 Micro D-to-USB Communication and Power Cable
- 6212-1000 Micro D-to-RS232 Communication and Power Cable
Video
General Documentation
- 3DM-GX4-15™ Datasheet
- 3DM-GX4-15™ Quick Start Guide
- 3DM-GX4-15™ User Manual
- 3DM-GX4-15™ Data Communications Protocol
- Inertial Product Comparison
- 3DM-GX4™ Products Declaration of Conformity
Technical Notes
- Migrating From a 3DM-GX3® Series Sensor to a 3DM-GX4™
- Using a Hardware Datalogger with a 3DM-GX4™
- 3DM-GX4-15™ Communication and Power Connector
Mechanical Prints (Uncontrolled)
- 6224-0100 Craft Cable with Micro DB9 and 9 flying leads
- 6212-1040 Micro D-to-USB Communication and Power Cable
- 6212-1000 Micro D-to-RS232 Communication and Power Cable
Video
- Hard & Soft Iron Calibration
- Enabling Robotic Attitude Sensing and Autonomous Navigation Through Inertial Sensor Technology
- 3DM-GX4™ inertial sensor family overview video
General Documentation
- 3DM-GX4-45™ Product Datasheet
- 3DM-GX4-45™ Quick Start Guide
- 3DM-GX4-45™ User Manual
- 3DM-GX4-45™ Data Communications Protocol
- Inertial Product Comparison
- 3DM-GX4™ Products Declaration of Conformity
Technical Notes
- Migrating From a 3DM-GX3® Series Sensor to a 3DM-GX4™
- Using a Hardware Datalogger with a 3DM-GX4™
- 3DM-GX4-45™ Communication and Power Connector
- Using a 3DM-GX4-45™ with Bluetooth® RS-232 Adapters
- Using a Chip-Size Antenna
Mechanical Prints (Uncontrolled)
- GPS Antenna Specifications
- GPS Antenna Mounting
- 6224-0100 Craft Cable with Micro DB9 and 9 flying leads
- 6212-1040 Micro D-to-USB Communication and Power Cable
- 6212-1000 Micro D-to-RS232 Communication and Power Cable
Video
Pages
Software
Software
- MIP Monitor Data Acquisition Software
- MIP Software Development C Code Sample for Windows and Linux Version 1.1
- MIP LabVIEW Sample Code
- SensorConnect Data Acquisition Software (beta)
Mechanical
Software/Firmware
Software
- MIP Monitor Data Acquisition Software
- MIP Software Development C Code Sample for Windows and Linux Version 1.1
- MIP LabVIEW Sample Code
- 3DM-GX3® -35 and 3DM-GX3® -45 Sample MATLAB code
- 3DM-GX3® -35 Sample Campbell Scientific CRBASIC code for CR1000/3000 Dataloggers
- SensorConnect Data Acquisition Software (beta)
Mechanical
Software
- MIP Monitor Data Acquisition Software
- MIP Software Development C Code Sample for Windows and Linux Version 1.1
- SensorConnect Data Acquisition Software (beta)
Mechanical
Software
- MIP Monitor Data Acquisition Software
- MIP Software Development C Code Sample for Windows and Linux Version 1.1
- SensorConnect Data Acquisition Software (beta)
Mechanical
Software
- MIP Monitor Data Acquisition Software
- MIP Software Development C Code Sample for Windows and Linux Version 1.1
- SensorConnect Data Acquisition Software (beta)
Mechanical